Pre-Calculus \& Trigonometry Scope and Sequence

main	46 D	42 Day		47 Days		
	ontent			Content		
INTERPRETING FUNCTIONS F.IF Understand the concept of a function, and use function notation.	F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $\mathrm{f}(\mathrm{kx})$, and $\mathrm{f}(\mathrm{x}+\mathrm{k})$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. F.BF. 4. Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x} \neq 1$. b. (+) Verify by composition that one function is the inverse of another. c. $\quad(+)$ Read values of an inverse function from a graph or a table, given that the function has an inverse. d. $(+)$ Produce an invertible function from a non-invertible function by restricting the	F.TF. 3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3$, $\pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-\mathrm{x}, \pi+\mathrm{x}$, and $2 \pi-\mathrm{x}$ in terms of their values for x , where x is any real number. F.TF. 4 (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. F.TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. F.TF. 6 (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed. F.TF. 7 (+) Use inverse functions to solve	A.APR. 5 (+) Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n , where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. 1 A.SSE. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. N.VM.1. (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., $\mathrm{v},\|\mathrm{v}\|$, $\\|\mathrm{v}\\|, \mathrm{v})$.	G.GPE.1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G.GPE.2. Derive the equation of a parabola given a focus and directrix. G.GPE. 3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. F.IF.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Instantaneous rates of change (derivatives) are beyond the scope of the Common Work with estimating area under a curve is considered college		
TRIGONOMETRIC						
FUNCTIONSBUILDINGFUNCTIONSF.TFF.BF						
EXPRESSINGGEOMETRICPROPERTIESWITHEQUATIONSG.GPE						
ARITHMETIC WITH POLYNOMIALS AND RATIONAL EXPRESSIONS A.APR						

with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. F.BF. 4 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x 3$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x} \neq 1$. b. $(+)$ Verify by composition that one function is the inverse of another. c. $(+)$ Read values of an inverse function from a graph or a table, given that the function has an inverse. d. $(+)$ Produce an invertible function from a non-invertible function by restricting the domain. F.BF. 5 (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents. F.LE. 4 For exponential models, express as a logarithm the solution to $a b c t=d$ where a, c, and d are numbers and the base b		N.CN.5. (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{ } 3$ i $) 3=8$ because $(-1+\sqrt{3}$ i) has modulus 2 and argument 120°.	

	is 2,10 , or e ; evaluate the logarithm using technology			
Resources	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy
Notes:	Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning.			

