

Pre-Calculus & Trigonometry Scope and Sequence

	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Domain	46 Days	42 Days	46 Days	47 Days
	Content	Content	Content	Content
INTERPRETING	F.BF.3	F.TF.3 (+) Use special	A.APR.5 (+) Know and	G.GPE.1 . Derive the equation
FUNCTIONS	Identify the effect on the graph of	triangles to determine	apply the Binomial	of a circle of given center and
F.IF Understand the	replacing $f(x)$ by $f(x) + k$, k $f(x)$,	geometrically the values of	Theorem for the expansion	radius using the Pythagorean
concept of a	f(kx), and $f(x + k)$ for specific	sine, cosine, tangent for $\pi/3$,	of $(x + y)n$ in powers of x	Theorem; complete the square
function, and use	values of k (both positive and	$\pi/4$ and $\pi/6$, and use the unit	and y for a positive integer	to find the center and radius of
function notation.	negative); find the value of k	circle to express the values	n, where x and y are any	a circle given by an equation.
	given the graphs. Experiment	of sine, cosine, and tangent	numbers, with coefficients	
TRIGONOMETRIC	with cases and illustrate an	for π -x, π +x, and 2π -x in	determined for example by	G.GPE.2 . Derive the equation
FUNCTIONS F.TF	explanation of the effects on the	terms of their values for x,	Pascal's	of a parabola given a focus
BUILDING	graph using technology. Include	where x is any real number.	Triangle.1	and directrix.
FUNCTIONS	recognizing even and odd			
F.BF	functions from their graphs and	F.TF.4 (+) Use the unit	A.SSE.4 Derive the	G.GPE.3 (+) Derive the
	algebraic expressions for them.	circle to explain symmetry	formula for the sum of a	equations of ellipses and
		(odd and even) and	finite geometric series	hyperbolas given the foci,
EXPRESSING	F.BF. 4. Find inverse functions.	periodicity of trigonometric	(when the common ratio is	using the fact that the sum or
GEOMETRIC	a. Solve an equation of the	functions.	not 1), and use the formula	difference of distances from
PROPERTIES	form $f(x) = c$ for a simple		to solve problems. For	the foci is constant.
WITH	function f that has an inverse and	F.TF.5 Choose trigonometric	example, calculate	
EQUATIONS	write an expression for the	functions to model periodic	mortgage payments. ★	F.IF.6. Calculate and interpret
G.GPE	inverse. For example, $f(x) = 2x3$	phenomena with specified		the average rate of change of a
	or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.	amplitude, frequency, and	N.VM.1. (+) Recognize	function
	b. (+) Verify by	midline. ★	vector quantities as having	(presented symbolically or as a
ARITHMETIC	composition that one function is		both magnitude and	table) over a specified interval.
WITH	the inverse of another.	F.TF.6 (+) Understand that	direction. Represent vector	Estimate the rate of change
POLYNOMIALS	c. (+) Read values of an	restricting a trigonometric	quantities by directed line	from a graph.★
AND RATIONAL	inverse function from a graph or a	function to a domain on	segments, and	
EXPRESSIONS	table, given that the function has	which it is always increasing	use appropriate symbols for	Instantaneous rates of change
A.APR	an inverse.	or always decreasing allows	vectors and their	(derivatives) are beyond the
	d. (+) Produce an invertible	its inverse to be constructed.	magnitudes (e.g., v, v ,	scope of the Common Work
	function from a non-invertible	F.TF.7 (+) Use inverse	$\ \mathbf{v}\ , \mathbf{v}$).	with estimating area under a
	function by restricting the	functions to solve		curve is considered college

WHCSD Scope and Sequence Pre-Calculus & Trigonometry

2021-2022

SEEING	domain. 5. (+) Understand	trigonometric equations that	N.VM.2. (+) Find the	level work and is beyond the
STRUCTURE IN	the inverse relationship between	arise in modeling contexts;	components of a vector by	scope of the Common Core
EXPRESSIONS	exponents and logarithms and use	evaluate the solutions using	subtracting the coordinates	Standards.
A.SSE	this relationship to solve	technology, and interpret	of an initial point from the	
	problems involving logarithms	them in terms of the	coordinates of a terminal	
	and exponents.	context.★	point.	
VECTOR AND				
MATRIX	F.BF.5 (+) Understand the	F.TF.8 Prove the	N.VM.3. (+) Solve	
QUANTITIES	inverse relationship between	Pythagorean identity $\sin 2(\theta)$	problems involving	
N.VM	exponents and logarithms and use	$+\cos 2(\theta) = 1$ and use it to	velocity and other	
	this relationship to solve	find $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$	quantities that can be	
THE COMPLEX	problems involving logarithms	given $sin(\theta)$, $cos(\theta)$, or $tan(\theta)$	represented by vectors.	
NUMBER SYSTEM	and exponents.	and the quadrant of the		
N.CN		angle.	N.VM.4. $(+)$ Add and	
	F.LE.4 For exponential models,		subtract vectors.	
	express as a logarithm the	F.TF.9 (+) Prove the	a. Add vectors end-to-end,	
	solution to $abct = d$ where a, c,	addition and subtraction	component-wise, and by	
	and d are numbers and the base b	formulas for sine, cosine,	the	
	is 2, 10, or e; evaluate the	and tangent and use them to	parallelogram rule.	
	logarithm using technology	solve problems.	Understand that the	
			magnitude of a sum of	
	G.SRT.9 (+) Derive the formula	F.IF.7d (+) Graph rational	two vectors is typically not	
	A = 1/2 ab sin(C) for the area of a	functions, identifying zeros	the sum of the magnitudes.	
	triangle by drawing an auxiliary	and asymptotes	b. Given two vectors in	
	line from a vertex perpendicular	when suitable factorizations	magnitude and direction	
	to the opposite side.	are available, and showing	form, determine the	
	C SDT 10 (1) Dresse the Learner	end	magnitude and direction of	
	G.SKI.IU (+) Prove the Laws	benavior.	their sum.	
	of Silles and Cosilles and use	A ADD 7 (1) Understond	c. Understand vector	
	them to solve problems.	A.AFR.7 (+) Understand	subtraction $v - w$ as $v + (w)$ where w is the	
	C SDT 11 (+) Understand and	form a system analogous to	(-w), where -w is the	
	G.SKI.II $(+)$ Understand and apply the Law of Sines and the	the rational numbers aloged	the same magnitude as w	
	I aw of Cosines to find unknown	under addition subtraction	and pointing	
	measurements in right and	multiplication and division	in the opposite direction	
	non-right triangles (e.g.	hy a nonzero rational	Represent vector	
	surveying problems resultant	expression: add	subtraction graphically	
	surveying problems, resultant	capicosion, auu,	subtraction graphicany	

forces).	subtract, multiply, and divide	by connecting the tips in	
	rational expressions.	the appropriate order, and	
F.TF.1 Understand radian		perform	
measure of an angle as the length	F.TF.4 (+) Use the unit	vector subtraction	
of the arc on the unit circle	circle to explain symmetry	component-wise.	
subtended by the angle	(odd and even) and		
	periodicity of trigonometric	N.VM.5. (+) Multiply a	
F.TF.2 Explain how the unit	functions.	vector by a scalar.	
circle in the coordinate plane		a. Represent scalar	
enables the extension of	F.TF.5 Choose	multiplication graphically	
trigonometric functions to all real	trigonometric functions to	by scaling vectors and	
numbers, interpreted as radian	model periodic phenomena	possibly reversing their	
measures of angles traversed	with specified amplitude,	direction; perform scalar	
counterclockwise around the unit	frequency, and midline. \bigstar	multiplication	
circle.		component-wise, e.g., as	
	F.TF.6 (+) Understand that	c(vx, vy) = (cvx, cvy).	
F.IF.4 For a function that	restricting a trigonometric	b. Compute the magnitude	
models a relationship between	function to a domain on	of a scalar multiple cv	
two quantities, interpret key	which it is always increasing	using $ \mathbf{c}\mathbf{v} = \mathbf{c} \mathbf{v}$.	
features of graphs and tables in	or always decreasing allows	Compute the direction of cv	
terms of the quantities, and sketch	its inverse to be constructed.	knowing that when $ c v \neq 0$,	
graphs showing key features		the	
given a verbal description of the	F.TF.7 (+) Use inverse	direction of cv is either	
relationship. Key features	functions to solve	along v (for $c > 0$) or	
include: intercepts; intervals	trigonometric equations that	against v (for $c < 0$).	
where the function is increasing,	arise in modeling contexts;		
decreasing, positive, or negative;	evaluate the solutions using	N.CN.4. (+) Represent	
relative maximums and	technology, and interpret	complex numbers on the	
minimums; symmetries; end	them in terms of the	complex plane in	
behavior; and	context.★	rectangular and polar form	
		(including real and	
F.BF.3 Identify the effect on the		imaginary numbers), and	
graph of replacing $f(x)$ by $f(x)$ +		explain why the rectangular	
k, k $f(x)$, $f(kx)$, and $f(x + k)$ for		and polar forms of a given	
specific values of k (both positive		complex number	
and negative); find the value of k		represent the same number.	
given the graphs. Experiment			

WHCSD Scope and Sequence Pre-Calculus & Trigonometry

with cases and illustrate an	N.CN.5. (+) Represent	
explanation of the effects on the	addition, subtraction,	
graph using technology. Include	multiplication, and	
recognizing even and odd	conjugation of complex	
functions from their graphs and	numbers geometrically on	
algebraic expressions for them.	the complex plane; use	
	properties of this	
F.BF.4 Find inverse functions.	representation for	
a. Solve an equation of the	computation. For example,	
form $f(x) = c$ for a simple	$(-1 + \sqrt{3} i)3 = 8$ because	
function f that has an inverse and	$(-1 + \sqrt{3} i)$ has modulus 2	
write an expression for the	and argument 120°.	
inverse. For example, $f(x) = 2x3$	e	
or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.		
b. (+) Verify by		
composition that one function is		
the inverse of another.		
c. (+) Read values of an		
inverse function from a graph or a		
table, given that the function has		
an inverse.		
d. (+) Produce an invertible		
function from a non-invertible		
function by restricting the		
domain.		
F.BF.5 (+) Understand the		
inverse relationship between		
exponents and logarithms and use		
this relationship to solve		
problems involving logarithms		
and exponents.		
F.LE.4 For exponential models,		
express as a logarithm the		
solution to $abct = d$ where a, c,		
and d are numbers and the base b		

WHCSD Scope and Sequence Pre-Calculus & Trigonometry

	is 2, 10, or e; evaluate the logarithm using technology			
Resources	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework
	Kahn Academy	Kahn Academy	Kahn Academy	Kahn Academy
Notes:	Mathematical Practices Iteration reducing Iteration reducing 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning.			